24 research outputs found

    Wave scattering by PT-symmetric epsilon-near-zero periodic structures

    Full text link
    The optical properties of PT-symmetric epsilonnear-zero (ENZ) periodic stack of the layers with balanced loss and gain have been examined. The effect of periodicity on the unidirectional tunneling phenomenon and symmetry breaking is determined. The performed analysis provides insight in the main features of the second harmonic (SH) generation by the ENZ PTsymmetric periodic structure.Comment: 4 pages, 6 figures, EuMW 2015 conferenc

    Nonreciprocal Scattering by PT-symmetric stack of the layers

    Full text link
    The nonreciprocal wave propagation in PT-symmetric periodic stack of binary dielectric layers characterised by balances loss and gain is analysed. The main mechanisms and resonant properties of the scattered plane waves are illustrated by the simulation results, and the effects of the periodicity and individual layer parameters on the stack nonreciprocal response are discussed. Gaussian beam dynamics in this type of structure is examined. The beam splitting in PT-symmetric periodic structure is observed. It is demonstrated that for slant beam incidence the break of the symmetry of field distribution takes place.Comment: 4 pages, 5 figures, ICTON 2015 conferenc

    Graphene and Active Metamaterials: Theoretical Methods and Physical Properties

    Get PDF
    The interaction of light with matter has triggered the interest of scientists for a long time. The area of plasmonics emerges in this context through the interaction of light with valence electrons in metals. The random phase approximation in the long wavelength limit is used for analytical investigation of plasmons in threeā€dimensional metals, in a twoā€dimensional electron gas, and finally in the most famous twoā€dimensional semiā€metal, namely graphene. We show that plasmons in bulk metals as well as in a twoā€dimensional electron gas originate from classical laws, whereas quantum effects appear as nonā€local corrections. On the other hand, graphene plasmons are purely quantum modes, and thus, they would not exist in a ā€œclassical world.ā€ Furthermore, under certain circumstances, light is able to couple with plasmons on metallic surfaces, forming a surface plasmon polariton, which is very important in nanoplasmonics due to its subwavelength nature. In addition, we outline two applications that complete our theoretical investigation. First, we examine how the presence of gain (active) dielectrics affects surface plasmon polariton properties and we find that there is a gain value for which the metallic losses are completely eliminated resulting in lossless plasmon propagation. Second, we combine monolayers of graphene in a periodic order and construct a plasmonic metamaterial that provides tunable wave propagation properties, such as epsilonā€nearā€zero behavior, normal, and negative refraction

    Self-induced transparency in a flux-qubit chain

    Get PDF
    We introduce a quantum superconducting metamaterial design constituted of flux qubits that operate as artificial atoms and analyze the dynamics of an injected electromagnetic pulse in the system. Qubit-photon interaction affects dramatically the nonlinear photon pulse propagation. We find analytically that the well known atomic phenomenon of self induced transparency may occur in this metamaterial as well and may lead to significant control over the optical pulse propagating properties. Specifically, the pulse may be slowed down substantially or even be stopped. These pulse properties depend crucially on the inhomogeneous broadening of the levels of the artificial atoms. Ā© 201

    Qubit lattice coherence induced by electromagnetic pulses in superconducting metamaterials

    Get PDF
    Quantum bits (qubits) are at the heart of quantum information processing schemes. Currently, solid-state qubits, and in particular the superconducting ones, seem to satisfy the requirements for being the building blocks of viable quantum computers, since they exhibit relatively long coherence times, extremely low dissipation, and scalability. The possibility of achieving quantum coherence in macroscopic circuits comprising Josephson junctions, envisioned by Legett in the 1980s, was demonstrated for the first time in a charge qubit; since then, the exploitation of macroscopic quantum effects in low-capacitance Josephson junction circuits allowed for the realization of several kinds of superconducting qubits. Furthermore, coupling between qubits has been successfully achieved that was followed by the construction of multiple-qubit logic gates and the implementation of several algorithms. Here it is demonstrated that induced qubit lattice coherence as well as two remarkable quantum coherent optical phenomena, i.e., self-induced transparency and Dicke-type superradiance, may occur during light-pulse propagation in quantum metamaterials comprising superconducting charge qubits. The generated qubit lattice pulse forms a compound quantum breather that propagates in synchrony with the electromagnetic pulse. The experimental confirmation of such effects in superconducting quantum metamaterials may open a new pathway to potentially powerful quantum computing

    Machine Learning With Observers Predicts Complex Spatiotemporal Behavior

    Get PDF
    Chimeras and branching are two archetypical complex phenomena that appear in many physical systems; because of their different intrinsic dynamics, they delineate opposite non-trivial limits in the complexity of wave motion and present severe challenges in predicting chaotic and singular behavior in extended physical systems. We report on the long-term forecasting capability of Long Short-Term Memory (LSTM) and reservoir computing (RC) recurrent neural networks, when they are applied to the spatiotemporal evolution of turbulent chimeras in simulated arrays of coupled superconducting quantum interference devices (SQUIDs) or lasers, and branching in the electronic flow of two-dimensional graphene with random potential. We propose a new method in which we assign one LSTM network to each system node except for ā€œobserverā€ nodes which provide continual ā€œground truthā€ measurements as input; we refer to this method as ā€œObserver LSTMā€ (OLSTM). We demonstrate that even a small number of observers greatly improves the data-driven (model-free) long-term forecasting capability of the LSTM networks and provide the framework for a consistent comparison between the RC and LSTM methods. We find that RC requires smaller training datasets than OLSTMs, but the latter require fewer observers. Both methods are benchmarked against Feed-Forward neural networks (FNNs), also trained to make predictions with observers (OFNNs)

    Qubit-photon bound states in superconducting metamaterials

    Get PDF
    We study quantum features of electromagnetic radiation propagating in a one-dimensional superconducting quantum metamaterial composed of an infinite chain of charge qubits placed within two stripe massive superconducting resonators. The quantum-mechanical model is derived assuming weak fields and that, at low temperatures, each qubit is either unoccupied or occupied by a single Cooper pair. We demonstrate the emergence of two bands of single-photon qubit bound states with the energies lying outside the photon continuumā€”one is above and the second slightly below the linear photon band. The higher energy band varies slowly with the qubit-photon center of mass quasimomentum. It becomes practically flat provided that the electromagnetic energy is far below the Josephson energy when the latter is small compared to the charging energy. The dispersion of the lower band is practically identical to that of free photons. The emergence of bound states may cause radiation trapping indicating possible applicability for the control of photon transport in superconducting qubit-based artificial media

    Biphonons in the beta-Fermi-Pasta-Ulam model

    No full text
    Discrete breathers or intrinsic localized modes are nonlinear localized states that appear in several classical extended systems, such as for instance the Fermi-Paste-Ulam (FPU) model. In order to probe the quantum states that correspond to discrete breathers, we quantize the beta-FPU model using boson quantization rules, retain only number conserving terms, and analyze the two-quanta sector of the model. For both attractive and repulsive nonlinearity, we find the occurrence of biphonons in two forms, on-site and nearest-neighbor site, and analyze their properties. We comment on the use of this model as a minimal model for extended molecular and biomolecular systems. (c) 2006 Elsevier B.V. All rights reserved.Conference on Nonlinear Physics - Condensed Matter, Dynamical Systems and Biophysics, May 30-31, 2005, Inst Henri Poincare, Paris, Franc
    corecore